量子计算的未来展望
量子计算,这一曾被视为科幻的技术奇迹,如今正逐步从理论走向现实,并在不断迭代中展现其颠覆性的计算潜力。一个量子比特可以同时存储0和1两个数,这使得量子计算机在处理某些类型的问题上,相比传统计算机有着巨大的速度优势。量子力学是20世纪以来最重要的科学进展之一,随着第一次量子科技革命的推进,量子信息科学迎来了新一轮的快速发展。进入21世纪,量子科技革命的第二次浪潮来临,催生了量子计算、量子通信、量子测量等一批新兴技术,极大地改变和提高了人类获取、传输和处理信息的方式和能力14。
量子计算的发展历程
量子计算的发展最早可以追溯到上世纪80年代,物理学家理查德·费曼首次提出量子模拟的概念,之后科学家通过一系列验证性实验论证了量子计算的可行性,指出可利用量子计算机求解电子计算机(经典计算机)难以解决的问题。在随后的几十年里,理论物理学家不断完善量子计算的理论基础,包括量子比特的引入、量子叠加态和量子纠缠等特性的揭示。1994年,彼得·肖尔提出的肖尔算法和洛夫·格罗弗的格罗弗量子搜索算法,更是进一步展示了量子计算机在解决特定问题上的高效性13。
量子计算的技术路径
当前,量子计算新技术研究路径尚未收敛,主要包括超导、离子阱、光量子、量子点、冷原子等。从技术研发上看,超导路线拥有最多的技术追随者。基于超导量子位的量子计算是一种最早被提出和研究的量子计算实现方法,它基于超导性能的材料,使用电荷量子比特、磁通量子比特和相位量子比特这3种方式来形成量子比特。超导量子比特在操控、耦合、测量、扩展等方面具有显著优势。过去几十年里,超导量子计算有一定的发展,实现了与量子态所需精度相当的高精度控制、微波单光子状态的制备等主要技术13。
量子计算的现状
当前国际商业机器公司(IBM)开发的超导量子芯片比特数量已进入千位时代,在全球已部署了70余台量子计算机。拥有72个计算量子比特的中国第三代自主超导量子计算机“本源悟空”已完成137个国家用户的30万个量子计算任务。其他研究路径上,各有所长,各自推进。量子计算机的研发是一项复杂的任务,涉及量子芯片、量子计算测控系统、低温制冷系统、量子计算机操作系统、应用软件等多个方面13。
量子计算的未来发展
国际商业机器公司(IBM)作为全球量子计算领跑者,于2023年12月发布1121比特量子处理器Condor,并推出首款模块化量子计算机IBM Quantum System Two。近期,美国谷歌公司开发的一款量子芯片Willow,首次实现了“低于阈值”的量子计算——即在扩展量子比特数量时,能够降低误差率,这是量子计算领域一个重要里程碑。加拿大、日本、中国的量子计算团队也在迅速向几百、上千比特迭代。本源量子于2024年1月上线“本源悟空”超导量子计算机,搭载由72个计算比特和126个耦合比特构成的量子芯片。量子计算与超级计算、智能计算的融合发展正成为现实。全球主要国家正在加快布局建立量子经典协同计算平台3。
综上所述,量子计算正处于快速发展之中,其未来潜力无限,将在多个领域引发革命性的变化。